
Crystallization of pentagon packings

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 3421

(http://iopscience.iop.org/0953-8984/7/18/006)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/18
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.: Condens. M&r 7 (1995) 3421-3430. Printed in the UK 

Crystallization of pentagon packings 

Y Limon Duparcmeurt, A Gervoist and J P Troadect 
t Group Matiere Condens& et Matdriaux URA 804. Universite de Rennes I. Campus de 
Beaulieu, 35042 Rennes a d e x .  France 
$ Service de Physique Thdorique, DSM. U3 Saclay, 91191 Cif sur Yvette Cddex, France 

Received 28 December 1994, in final form 16 February 1995 

Abstract. We present an experiment of densification of a zn horizontal assembly made of 
regular pentagons. The annealing leads to a dense crystalline arrangement with quasisixfold 
symmetry in spite of the geometrical characteristics of the grains and of the apriori short-range 
correlation length in the packing. ? l i s  configuration yields the maximum average number of 
side to side contacts between the &os and probably the maximum packing fraction. 

1. Introduction 

Two-dimensional packings of discs have been used to model a large number of systems 
ranging f” (two-dimensional) dense gases to solids, with liquids and ‘granular media’ 
as intermediate steps. The structure of ZD dense packings has been intensively studied by 
numerical simulations (Visscher and Bolsterli 1972). experimentally (Dodds 1975, Bideau 
et al 1986) and theoretically (Rubinstein and Nelson 1982). The experimental study of 
Quickenden and Tan (1974) and that of Lem6tre etal (1991) on packings on a blowing air 
table have shown the structural changes when densifying packings of discs. The particle size 
distribution has been used in order to understand the short-range geometrical correlations 
(Troadec et ai 1994). 

Systems with more complicated particle geometry were also considered. Some 
numerical (Cuesta and Frenkel 1990) and theoretical results (Vieillard-Baron 1972) are 
available on ellipses. Ammi et al (1987) have studied the geometry and the mechanical 
properties of packings of various regular polygons, built under pseudocentral force. 
Polygons are particular because they present two types of contact: side to side contacts 
and side to vertex contacts. 

The blowing air table used by Lemaitre et al (1991) for discs allows also the study 
of the influence of the shape of particles on the structure of the packing. The first tests 
were performed with ellipses, but, as the correlation length in the ordered zones was always 
larger than the size of the system, no definitive conclusions could be obtained. Following 
the work of Ammi et al (1987), and looking for particles which should not lead to any 
long-range order, we have chosen pentagons. 

We present, in this paper, a study of the densification of a packing of pentagons on 
the blowing air table. Surprisingly, the simulation of the annealing of the packing leads to 
a crystal. In the following, we describe the experiment. The structure of the theoretical 
crystal is then described, and compared to the experimental one. 
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2. Experimental conditions 

The experimental device has already been described in detail (Lemaltre et al 1990). A wind 
tunnel blows a uniform vertical air stream through a horizontal porous square plate (useful 
surface 2000 cm2) made of sintered bronze. The air stream, controlled by the voltage applied 
to two air fans, sustains small light particles. Thus it is possible to obtain 2D assemblies in 
which the friction with the table does not prevent local arrangements. Because of the local 
fluctuation of the air velocity field, the particles rearrange permanently and after a short 
'thermalization' time, their spatial distribution becomes homogeneous. The particles are 
submitted to hard-core interactions, but also to weak hydrodynamic interactions that cause 
an effective short-range order repulsion (Lemaitre era1 1991). 

In our experiments the assemblies are made of 2200 styrene pentagons of 6 mm 
sidelength and 1 mm thickness. The horizontality of the table has been adjusted for a 
voltage V = 150 V applied to the air fans. With such a voltage. the pentagons are distributed 
over the whole surface of the table and form a not very dense assembly (packing fraction 
C * 0.7). The simulation of annealing is obtained by decreasing the voltage V from 150 V, 
very slowly in order that the system remains in equilibrium with the air flow. As the voltage 
decreases, the table bends down because of the diminution of the air pressure under it (the 
table deformation is about 10 p n  for a variation of 200 V of V ) .  There is also probably 
a modification of the hydrodynamic interactions. The particles tend to gather towards the 
centre of the table. Thus, the structure of the assembly evolves and its packing fraction, the 
ratio of the area of the pentagons to the area they occupy effectively, increases. 

In order to study that evolution, video records and snapshots are taken. Both of them 
can be digitized and studied with an image processing system on a workstation. 
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3. Experimental results 

Figures 1 and 2 show respectively the variations of the packing fraction and the variations 
of the velocity of the particles when one decreases the voltage V. At the beginning of the 
experiment, when a strong air stream is applied, the particles move quickly. Their motion 
occurs on all dcgrees of freedom ; in particular their rotation speed is high. There is no 
orientational correlation between the particles. If we consider the particle positions, no 
appreciable difference between discs and pentagons can be observed in this regime. The 
Fourier transform of particle positions performed at V = 100 V (figure 3(a)) shows that the 
assembly is isotropic and disordered. 

When we reduce slowly the air stream, the packing fraction increases, but due to the 
hydrodynamic shori-range repulsion, there is no real contact between the particles. In one 
sense, this repulsion smooths the geometry of the particles. The environment of one particle 
remains close to that of a disc in a disc packing. Below approximately V = 90 V, ordered 
zones with sixfold symmetry appear, separated by dislocation lines or amorphous zones in 
permanent motion. At that stage, order affects only the particle positions. Figure 3(b) gives 
the Fourier transform of the position of the centres for V = 60 V. 

When the air stream is further reduced, an orientational order appears which leads to 
a distortion of the lattice, and we obtain crystalline zones (figure 4). One single crystal 
cannot be obtained because the basic cell is not quite isotropic. The crystalline zones grow 
by nucleation within the previous ordered zones. It takes a few minutes to get a crystalline 
zone big enough to be studied. Note that two mechanisms are involved in the formation of 
the structure: 
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Figurr 1. Variation of the packing fraction C wilh 
the vollage V applied to the air fans for a packing of 
2200 pentagons. At low voltage, the packing fraction 
does not reach the value 0.92 that we will find in 
crystalline wnes because it IS measured in the centre of 
the rable where the packing defects are more numerous 
( S e e  figure 4). 
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Figure 2. Variation of the mean velocity of pmicles 
with the vollage V applied to the air fans. 

(i) adecrease of the velocity of the particles (figure Z), which is equivalent to a decrease 

(ii) an increase of the packing fraction at the centre of the table (figure 1). 

Both are necessary to get a crystal. No crystal is obtained at both high packing fraction 
and high air stream. 

An experiment close to ours was performed some years ago (Spaepen and Nelson 
unpublished, quoted by Sachdev and Nelson 1985), in which the density of pentagons was 
gradually increased in a vibrating shaking table apparatus. Although a domain with the 
same crystalline structure as ours could be observed, the emphasis was put only on the fact 
that the centres of the pentagons formed a hexagonal lattice. 

Qualitatively, the crystalline structure of our experiment is favoured by two antagonistic 
effects, which both increase when the ‘thermal’ motion is reduced-the compaction of 
the packing and the hydrodynamic repulsion between the particles: there is no real 
contact between the polygons. The repulsion is stronger when the number of side to 
side neighbourhoods is maximum. If one discards the possibility of vertex to vertex 
neighbourhood which should be unstable in a dynamical system, it  can be shown (see 
appendix) that, in a dense packing, the largest value of the mean number of side to side 
neighbourhoods of a pentagon is four. In the crystalline zones, this is precisely the value 
observed for each pentagon which has also two side to vertex neighbourhoods. 

Generally, even after a long time, the ordered zones (with quasi sixfold symmetry) are 
not perfectly crystalline. In some places there is no orientational order. In other places 
there are more localized orientational defects. As we can see in figure 5, in a crystalline 
zone, there is a particular direction a along which lines of pentagons with side to vertex 
neighbourhood are directed. The orientation of a pentagon can be identified by the angle a 
between the direction a and a line pointing f” the centre of the pentagon to the vertex 

of the ‘granular’ temperature of the packing, 
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(61 
Figure 3. Founer transform oithr posmns of the centres of the pentagons (a) at v = loo v, 
(b) at V = 60 V. 

closest to direction a. This has meaning only where there is a nearly perfect orientational 
order. While considering orientation of pentagons, we have to keep in mind that even at 
a low voltage (less than 40 V) pentagons still oscillate around their equilibrium direction. 
When we take a snapshot of the packing, we freeze positions at a given time. Some of the 
observed misorientation of particles can be explained by the fact that we do not average 
orientations over the time. So, we consider that there is no orientational defect when the 
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Figure 4. An experimental crystal of pentagons on the blowing air table. 

angle a of orientation of a pentagon is less than n/10. 
All crystalline areas stop either on the limit between two ordered zones with quasisixfold 

symmetry, or, within the same ordered zone, on a line of orientational defects or a zone 
without orientation order. On a line of defects, there is a switching of crystal orientation. 
Orientation switchings are of 180" or of approximately 60". Boundaries of oriented areas 
are well defined. There is no isolated orientational defects. As one misoriented pentagon 
IS separated from a stable position by less than n/10 radians and as there is no static 
friction, nothing stabilizes the pentagon outside a crystallographic position. Thus there is 
no metastable position between two orientations separated by n 15. As there is no static 
friction, all defects have to he stabilized by their environment. 

4. Description of the crystallized structure 

From the structure observed in the experimental packing, we have drawn the regular 
lattice of figure 6. That structure (among some others) has already been briefly quoted 
by Henley (1986) who thinks of it as the closest packing of pentagons. As said above, 
there is a principal direction a in  the packing, along which pentagons are pointing. The 
two other directions b and c are determined from the side to side contacts. The cell 
parameters of the theoretical lattice are a = 1.53884s, b = 1.41064s, c = 1.46439s 
where s is the sidelength of the pentagons. There is some distortion between these 
parameters: (a - b ) / b  = 9.1% between Q and b, (a - c) /c  = 5.1% between a and c 
and (c - b ) / b  = 3.8% between b and c. The angles are slightly different from 60": more 
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Figure 5. Visualization of the limits of the crystdlinc zones in the top left pan or the packing 
of f~gurs 4. The thin lines give the direction a in the different zones. 

precisely, (a, b) = 59.3", (a. c) = 56.0". (b ,  e) = 64.7". So, the difference between disc 
and pentagon leads to a reduction of the symmetry from sixfold to rectangular, and the 2D 
space group of the arrangement in figure 6 is pm (International Tables for Crystallography 
vol A). Moreover, the space group is almost p2mg. a subgroup of the ZD hexagonal space 
group p6mm. hut the glide line g and the twofold rotation point are not true symmetly 
elements. The packing fraction of the regular packing of figure 6 is C = 0.9213, while that 
of the structure with p2mg symmetry is only 0.8389. Actually, because of the hydrodynamic 
repulsion between the particles, the experimental structure is intermediate (the experimental 
values of angles (a, b), (a, e) and (b, e) are closer to 60" than the values given above). 

In the packing of figure 6 ,  each pentagon is surrounded by z = 6 pentagons. There 
are zsr = 4 side to side contacts and z,, = 2 side to vertex contacts. We prove in the 
appendix that-provided no vertex to vertex contact exists-the values six and four are the 
largest values that can be obtained respectively for the average coordination number, Z. and 
the average number, zss, of side to side contacts per pentagon in any assembly (regular or 
disordered) made of regular pentagons: 

z < 6  ( 1 4  
zss < 4. (Ib)  

The first inequality is actually more general and holds even when vertex to vertex contacts 
take place or for higher-order polygons (heptagons, . . .). Moreover, it may he proved 
that this average maximum is also a local maximum (which is not true for zss). Coming 
hack to our pentagons, it may be proved conversely that when both maxima are reached 



Crystallization of pentagon packings 3427 

Figure 6. The theoretical clystal of pentagons. The space 
group is pm. The unit cell is shown in grey. 

simultaneously, the pore space consists of triangles only, each with two side to side contacts. 
When the length of one side of a triangle is fixed, the minimal area of the triangle is obtained, 
with the constraint of angles < 2 ~ 1 5 %  when two angles are equal to 2 r / 5  and the third is 
equal to r / 5 .  Minimization of the area is still better when the side to vertex contact is 
in the middle of the side, Then, our crystal has the largest possible packing fraction with 
z = 6 and zss = 4. We did not succeed in proving that this is the largest possible value. 

5. Conclusion 

Starting from an isotropic assembly of regular pentagons on an air table, we obtain by 
progressive densification and cooling a crystalline arrangement with quasisixfold symmetry 
in spite of the shape of the grain. The three directions are slightly distorted. Defects arise 
along lines. 

This configuration maximizes the average number of contacts and the average number of 
side to side contacts. This may be proved theoretically provided no vertex to vertex contact 
exists, which is the case on the air table. The packing fraction is probably maximum too, 
hut we were just able to get partial results. 

The importance of side to side contacts at large packing fraction is due to the possibility 
for permanent reorganization on the table. It would not be the case in the presence of 
friction (Ammi et a1 1987). We are presently studying a numerical model using molecular 
dynamics. Pentagons are placed randomly with random orientation inside a large circle. 
Then a densification towards the centre of the circle is performed. After relaxing the 
packing, one gets crystallized zones. 
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Appendix 

We consider a packing of regular pentagons dense enough so that each pentagon has at least 
two contacts. We do not require the packing to be crystalline but we discard the possibility 
of vertex to vertex contacts. This packing may be regarded as a graph made of polygons: 
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(i) the P pentagons which form the grain space of the packing; 
(ii) T triangles and Pn polygons with n sides (n-gons, n > 4), which form the pore 

space. The n-gons are concave as some vertices belong neither to a side to side nor to a 
side to vertex contact. Let g(n) be the mean number of 'concave' vertices of an n-gon. The 
corresponding angles of the n-gon are 7n/5. Of course, we have: 

O G N 4 G n - 3  (AI) 

(ii) moreover, the Dz side to side contacts between the pentagons will be represented 
as 2-gons (figure Al). 

A l .  Topological properties: proof of inequality (la) 

Some general relations exist between the elements of the graph. The total number N of 
polygons is 

N = P 4- T f 02 t P,. 
n24 

The number of vertices is 

v = 5P. 

The coordination number of the 'concave' vertic 0, while thi 
other vertices is four. The number E of edges of the graph is then 

of n-gc 

We are mainly interested in quantities related to the pentagons of the packing. According 
to the type of contact, the mean coordination number z of the pentagons can be written as 

z = zs + 2s" 

where zs and zEY are the mean numbers of respectively si& to side and side to vertex 
contacts around a pentagon. We have some relations among the different polygons of the 
graph that can be given as a function of P, zas and zrv only: 

Dz = zSP/2. (A3d 
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Euler's law gives 

1) P .  P, = (T zss + ZS" - T + 
n,4 

Counting the polygons forming the pore space of the packing, we can express V as: 
V = 3 T  i - C n P ,  - - P .  ZS" 

2 n>4 

Then, from (A2b) and (A3b): 

The number of edges of the graph can be expressed as 
E = (5 + zS + z , , /2 )P.  

Then, from (A2b) and (A2c): 

Actually, the same derivation may be performed when introducing vertex to vertex contacts 
or when replacing pentagons of the packing by higher-order polygons. Moreover, because 
of the right inequality in (AI), we get (la) from (A3c) and (A3d): 

z = zSs + zsv < 6. 
A2. Metric properties: proof of inequality (Ib) 

We can now use the peculiar values of the angles in regular polygons to refine inequality 
(Al),  at least when no vertex to vertex contact exists. In an n-gon, concave angles are k / 5  
and side to vertex angles are less than 27r/5. The sum of the angles is 

G44) 
I A  211 

5 ( n  - 2)a = j @ ( n )  t -u(n) + C~i(n) 
1 

where u(n) is the number of side to side contacts, xi (n)  is the sum of the angles less than 
2n/5 (theirnumber is n-@(n)-u[n)) .  The possible values of @ ( x )  are $(4) = 1, @(5) = I 
when all acute angles are equal to 2n/5 or @(5) = 2, @(6) = 2, @(7) = 3, @(8) = 3 or 
4.... 

We first note that from (A4) 

@(n) < $(n - 2) .  (AS) 
Setting now B ( n )  to its maximum value 21115, we get another inequality 

Note that (n  - 3)/2 6 3n/5 - 2 as soon as n > 5. More generally, as @(n) is an integer 
for a given n-gon, we have the important result which improves (AI): 

when n > 4. 
Now, because of the left inequality, we get inequality ( lb )  using (A3c) and (A3d): 

ZS < 4 .  
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A3. Application to our crystal 

Our packing is characterized by z = 6 and zrr = 4 which, according to inequalities (la) 
and (lb) are the maximum possible values. 

Y Limon Duparcmeur et a1 

From (A3c) and (A3d). the equality z = 6 implies 

which means that either @(n) = n - 3 or P, = 0. Strictly speaking, the equalities hold 
‘almost everywhere’, i.e. the exceptions are negligible compared to the mean behaviour in 
the graph; this is the case for a crystal. From (AS), since +(n - 2) < n - 3 as soon as 
n 2 6 we deduce that $(n) can be equal to n - 3 only when n = 1 or 5 (and two concave 
angles in the pentagons). Then, for z = 6, we have 

P 4 - zss P 4 + 2 P s = -  T + P4 + Ps = 2P.  
2 

From (A3c) and (A3d), the equality zJs = 4 implies that the pore space consists of triangles 
and concave pentagons only with all acute angles equal IO 2x15, with 

T + Ps = (1 + 2) P 

Ps = (1 - 2) P T=z,,P 

Then, for z = 6 and zs = 4, we have only triangles in the pore space, which is effectively 
realized in our packing. 
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